Robust visual tracking via combinative deep learning
نویسندگان
چکیده
منابع مشابه
Robust Visual Tracking via Fuzzy Kernel Representation
A robust visual kernel tracking approach is presented for solving the problem of existing background pixels in object model. At first, after definition of fuzzy set on image is given, a fuzzy factor is embedded into object model to form the fuzzy kernel representation. Secondly, a fuzzy membership functions are generated by centersurround approach and log likelihood ratio of feature distributio...
متن کاملRobust Visual Tracking via Coupled Randomness
Tracking algorithms for arbitrary objects are widely researched in the field of computer vision. At the beginning, an initialized bounding box is given as the input. After that, the algorithms are required to track the objective in the later frames on-the-fly. Tracking-by-detection is one of the main research branches of online tracking. However, there still exist two issues in order to improve...
متن کاملRobust Visual Tracking via Hierarchical Convolutional Features
Visual tracking is challenging as target objects often undergo significant appearance changes caused by deformation, abrupt motion, background clutter and occlusion. In this paper, we propose to exploit the rich hierarchical features of deep convolutional neural networks to improve the accuracy and robustness of visual tracking. Deep neural networks trained on object recognition datasets consis...
متن کاملRobust Tracking via Convolutional Networks without Learning
Deep networks have been successfully applied to visual tracking by learning a generic representation offline from numerous training images. However the offline training is time-consuming and the learned generic representation may be less discriminative for tracking specific objects. In this paper we present that, even without learning, simple convolutional networks can be powerful enough to dev...
متن کاملEnhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control
When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2018
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1074/1/012125